
Release Notes for Microchip Memory Disk Drive File
System
Version 1.2.0

August 20, 2008

1. Description

This library is intended to provide an interface to file systems compatible with ISO/IEC

specification 9293 (commonly referred to as FAT12 and FAT16). This library includes

four different physical interface files: one for SecureDigital card interface using the SPI

module, one for CompactFlash card interface using manual bit toggling, one for

CompactFlash card interface using the Parallel Master Port module included on several

PIC24/PIC32 microcontrollers, and one template interface file that can be modified by

the user to create a custom interface layer to an unsupported device..

2. Changes In This Release

From version 1.1.2

a. Fixed a bug that prevented the library from correctly loading the boot sector on

devices with no Master Boot Record.

b. Added support for 8.3 format directory names (up to 8 name characters and 3

extension characters.) To create or access directories with extensions, use path

strings with radix characters (e.g. FSmkdir (“EXAMPLE.DIR”)).

c. Added checks to the FSmkdir function to prevent the user from creating files with too

many radix characters (‘.’). Radixes at the beginning of the directory name will cause

the FSmkdir function to fail.

d. Added a check to the FSrmdir function to prevent the user from using it to delete non-

directory files or the current working directory.

e. Added the question mark (‘?’) partial string search operator to the FindFirst and

FindNext functions. Now when calling FindFirst or FindNext, you can skip checks of

individual characters by replacing them with question marks in the search string. For

example, calling FindFirst (“F?L?.TX?, ATTR_ARCHIVE, &rec);

would let you find the files “FILE.TXT,” “FOLD.TXT,” “FILM.TXM,” etc.

f. Modified the FindFirst and FindNext functions to correctly output directory names

with extensions.

g. Modified the FSgetcwd function to correctly insert directory names with extensions

in a path string.

h. Merged the functions to validate file/directory name characters together.

i. Added three new methods of opening files. To use these methods, just specify the

new strings as the mode argument in the FSfopen function. The new modes are:

a. “r+”: File will be opened for reading or writing

b. “w+”: File will be opened for reading or writing. If the file exists, its length

will be truncated to 0.

c. “a+”: File will be opened for reading or writing. If the file exists, the current

location within the file will be set to the end of the file.

j. Modified the FSfopen function to allow the user to open directories in the read mode.

k. Modified the FSrename function. Now, to rename a directory, open the directory in

read mode with FSfopen and pass the pointer to that open directory into FSrename.

l. Added a new function. The FSattrib function will allow the user to change the

attributes of files and directories. The API is:

Function: int FSattrib (FSFILE * file, unsigned char
attributes)
PreCondition: The file or directory pointed to by ‘file’ has
been opened successfully.
Input: file - The file or directory to modify
 attributes – The new attributes, including:

Attribute Value Indication
ATTR_READ_ONLY 0x01 The read-only attribute
ATTR_HIDDEN 0x02 The hidden attribute
ATTR_SYSTEM 0x04 The system attribute
ATTR_ARCHIVE 0x20 The archive attribute

Output: int - Returns 0 if success, -1 otherwise
Side Effects: None
Overview: Change the attributes of a file or directory.
Note: None
Example:
 FSFILE * pointer;
 pointer = FSfopen (“FILE.TXT”, “r”);
 if (pointer == NULL)
 // Error
 if (FSattrib (pointer, ATTR_READ_ONLY | ATTR_HIDDEN) != 0)
 // Error
 FSfclose (pointer);

m. Modified the SD Data Logger project to include a new shell command; the ‘ATTRIB’

command will let the user change or display the attributes of a file.

Example 1: ATTRIB +R +S –H –A FILE.TXT

This command will give the file FILE.TXT the read-only and system attributes, and

remove the hidden and archive attributes, if they’re set.

Example 2: ATTRIB FILE.TXT

This example will display the attributes of FILE.TXT.

n. Added a new function. The FSferror function will provide information about why a

previously called function failed. The API is:
Function: int FSerror (void)
PreCondition: None
Input: None
Output: int - Value depends on the last failing
function
 FSInit
 CE_GOOD – No Error

CE_INIT_ERROR – The physical media could not be
initialized

CE_BAD_SECTOR_READ – The MBR or the boot sector could
not be read correctly.

CE_BAD_PARITION – The MBR signature code was
incorrect.

CE_NOT_FORMATTED – The boot sector signature code was
incorrect or indicates an invalid number of
bytes per sector.

CE_CARDFAT32 – The physical media is FAT32 type (only
an error when FAT32 support is disabled).

CE_UNSUPPORTED_FS – The device is formatted with an
unsupported file system (not FAT12 or 16).

 FSfopen
 CE_GOOD – No Error
 CE_NOT_INIT – The device has not been initialized.

CE_TOO_MANY_FILES_OPEN – The function could not
allocate any additional file information to the
array of FSFILE structures or the heap.

CE_INVALID_FILENAME – The file name argument was
invalid.

CE_INVALID_ARGUMENT – The user attempted to open a
directory in a write mode or specified an
invalid mode argument.

CE_FILE_NOT_FOUND – The specified file (which was to
be opened in read mode) does not exist on the
device.

CE_BADCACHEREAD – A read from the device failed.
CE_ERASE_FAIL – The existing file could not be erased

(when opening a file in WRITE mode).
CE_DIR_FULL – The directory is full.
CE_DISK_FULL – The data memory section is full.
CE_WRITE_ERROR – A write to the device failed.
CE_SEEK_ERROR – The current position in the file could

not be set to the end (when the file was opened
in APPEND mode).

 FSfclose
 CE_GOOD – No Error

CE_WRITE_ERROR – The existing data in the data buffer
or the new file entry information could not be
written to the device.

CE_BADCACHEREAD – The file entry information could not
be cached

 FSfread
 CE_GOOD – No Error

CE_WRITEONLY – The file was opened in a write-only
mode.

CE_WRITE_ERROR – The existing data in the data buffer
could not be written to the device.

CE_BAD_SECTOR_READ – The data sector could not be
read.

CE_EOF – The end of the file was reached.
CE_COULD_NOT_GET_CLUSTER – Additional clusters in the

file could not be loaded.

 FSfwrite
 CE_GOOD – No Error

CE_READONLY – The file was opened in a read-only mode.
CE_WRITE_PROTECTED – The device write-protect check

function indicated that the device has been
write-protected.

CE_WRITE_ERROR – There was an error writing data to
the device.

CE_BADCACHEREAD – The data sector to be modified could
not be read from the device.

CE_DISK_FULL – All data clusters on the device are in
use.

 FSfseek
 CE_GOOD – No Error

CE_WRITE_ERROR – The existing data in the data buffer
could not be written to the device.

CE_INVALID_ARGUMENT – The specified offset exceeds the
size of the file.

CE_BADCACHEREAD – The sector that contains the new
current position could not be loaded.

CE_COULD_NOT_GET_CLUSTER – Additional clusters in the
file could not be loaded/allocated.

 FSftell
 CE_GOOD – No Error

 FSattrib
 CE_GOOD – No Error

CE_INVALID_ARGUMENT – The attribute argument was
invalid.

CE_BADCACHEREAD – The existing file entry information
could not be loaded.

CE_WRITE_ERROR – The file entry information could not
be written to the device.

 FSrename
 CE_GOOD – No Error

CE_FILENOTOPENED – A null file pointer was passed into
the function.

CE_INVALID_FILENAME – The file name passed into the
function was invalid.

CE_BADCACHEREAD – A read from the device failed.
CE_FILENAME_EXISTS – A file with the specified name

already exists.
CE_WRITE_ERROR – The new file entry data could not be

written to the device.

 FSfeof
 CE_GOOD – No Error

 FSformat
 CE_GOOD – No Error

CE_INIT_ERROR – The device could not be initialized.
CE_BADCACHEREAD – The master boot record or boot

sector could not be loaded successfully.
CE_INVALID_ARGUMENT – The user selected to create

their own boot sector on a device that has no
master boot record, or the mode argument was
invalid.

CE_WRITE_ERROR – The updated MBR/Boot sector could not
be written to the device.

CE_BAD_PARTITION – The calculated number of sectors
per clusters was invalid.

CE_NONSUPPORTED_SIZE – The card has too many sectors
to be formatted as FAT12 or FAT16.

 FSremove
 CE_GOOD – No Error

CE_WRITE_PROTECTED – The device write-protect check
function indicated that the device has been
write-protected.

CE_INVALID_FILENAME – The specified filename was
invalid.

CE_FILE_NOT_FOUND – The specified file could not be
found.

CE_ERASE_FAIL – The file could not be erased.

 FSchdir

CE_GOOD – No Error
CE_INVALID_ARGUMENT – The path string was mis-formed

or the user tried to change to a non-directory
file.

CE_BADCACHEREAD – A directory entry could not be
cached.

CE_DIR_NOT_FOUND – Could not find a directory in the
path.

 FSgetcwd

CE_GOOD – No Error
CE_INVALID_ARGUMENT – The user passed a 0-length

buffer into the function.
CE_BADCACHEREAD – A directory entry could not be

cached.
CE_BAD_SECTOR_READ – The function could not determine

a previous directory of the CWD.

 FSmkdir

CE_GOOD – No Error
CE_WRITE_PROTECTED – The device write-protect check

function indicated that the device has been
write-protected.

CE_INVALID_ARGUMENT – The path string was mis-formed.
CE_BADCACHEREAD – Could not successfully change to a

recently created directory to store its dir
entry information, or could not cache directory
entry information.

CE_INVALID_FILENAME – One or more of the directory
names has an invalid format.

CE_WRITE_ERROR – The existing data in the data buffer
could not be written to the device or the
dot/dotdot entries could not be written to a
newly created directory.

CE_DIR_FULL – There are no available dir entries in
the CWD.

CE_DISK_FULL – There are no available clusters in the
data region of the device.

 FSrmdir

CE_GOOD – No Error
CE_DIR_NOT_FOUND – The directory specified could not

be found or the function could not change to a
subdirectory within the directory to be deleted
(when recursive delete is enabled).

CE_INVALID_ARGUMENT – The user tried to remove the CWD
or root directory.

CE_BADCACHEREAD – A directory entry could not be
cached.

CE_DIR_NOT_EMPTY – The directory to be deleted was not
empty and recursive subdirectory removal was
disabled.

CE_ERASE_FAIL – The directory or one of the
directories or files within it could not be
deleted.

CE_BAD_SECTOR_READ – The function could not determine
a previous directory of the CWD.

 SetClockVars
 CE_GOOD – No Error

CE_INVALID_ARGUMENT – The time values passed into the
function were invalid.

 FindFirst

CE_GOOD – No Error
CE_INVALID_FILENAME – The specified filename was

invalid.
CE_FILE_NOT_FOUND – No file matching the specified

criteria was found.
CE_BADCACHEREAD – The file information for the file

that was found could not be cached.

 FindNext

CE_GOOD – No Error
CE_NOT_INIT – The SearchRec object was not initialized

by a call to FindFirst.
CE_INVALID_ARGUMENT – The SearchRec object was

initialized in a different directory from the
CWD.

CE_INVALID_FILENAME – The filename is invalid.
CE_FILE_NOT_FOUND – No file matching the specified

criteria was found.

 FSfprintf

CE_GOOD – No Error
CE_WRITE_ERROR – Characters could not be written to

the file.

Side Effects: None
Overview: Returns an error value for the last function
called.
Note: None
Example:
 int error;
 FSFILE * pointer;
 pointer = FSfopen (“FILE.TXT”, “r”);
 if (pointer == NULL)
 error = FSferror();
 switch (error)
 {
 // Error handling

 }
o. Revised most of the comment headers in the library.

p. Generated a CHM help file for the library. This file can be found in the (default)

directory “…\Microchip Solutions\Microchip\Help”

q. Removed extraneous macros and definitions.

r. Added a new Microchip standard header file (Compiler.h) to the library.

s. Removed the architecture-type configuration from the sample HardwareProfile.h

files. This will now be taken care of automatically within the source files.

From version 1.1.1

a. Fixed a bug that prevented the allocation of new clusters to the root directory in

FAT32 implementations.

b. Fixed a bug that prevented writing more than one cluster’s worth of file entries to the

root directory in FAT16/FAT12 implementations.

c. Fixed a bug that returned an incorrect date for directory entries located in the first

directory entry after a cluster boundary of a FAT32 root directory.

d. Fixed a bug with FSrename that would cause the function to improperly fail if the

directory entries in the current working directory (or previous directory, when

renaming the CWD) completely filled a cluster (and no data clusters were allocated to

the directory after that).

From version 1.1.0

a. Fixed a bug with the PIC24 clock divider that was causing the interface to run more

slowly than intended.

b. Added support for PIC32 microcontrollers.

From version 1.01

a. Added support for FAT32. To enable this functionality, make sure the

SUPPORT_FAT32 macro is uncommented in FSconfig.h.

b. Added functions to provide support for the USB Mass Storage Host code.

c. Moved pin and hardware definitions from physical interface files to

HardwareProfiles.h.

d. Created function pointers for functions that vary between interface files. These are

located in FSconfig.h.

e. Moved macros to select the correct physical layer to HardwareProfiles.h.

f. Modified the SD-SPI physical layer to ensure that communication speed during

startup falls between 100 kHz and 400 kHz

g. Created a new example project: MDD File System-PIC24-SD Data Logger. This

project contains code for a shell-style program based on the USB Thumb-drive shell

demonstrated in Application Note 1145.

h. Decreased the delay in the SD-SPI media initialization from 100 ms to 1 ms.

i. Added the ability to change directories when writes are disabled.

From version 1.0

a. FindFirst and FindNext will now return the create time/data in the timestamp field of a

SearchRec object when they return values for a directory.

b. Corrects a bug in the FindEmptyCluster function when searching for files beyond the

end of a storage device.

c. Automatically aligns buffers for 16-bit architectures.

d. For the SPI interface, prescaler divides will now be determined dynamically based on

the system clock speed defined in FSconfig.h.

e. The DiskMount, LoadMBR, LoadBootSector, and FSFormat functions, as well as the

gDiskData, gFATBuffer, and gDataBuffer structures are now located in FSIO.c instead of

in the interface files.

f. The SectorRead function will now do a dummy read of the sector and discard the data

if it is called with NULL as the data pointer.

g. Replaced the device initialization code in the FSFormat function with calls to InitIO

and MediaInitialize.

h. The MediaDetect function is not de-bounced. In order to determine that a device is

available, you must call MediaDetect, wait for an appropriate amount of time, and then

call it again.

i. The sample linker script in the MDD File System-PIC18-CF-DynMem-UserDefClock

project has been modified. Previously, several databanks were merged together; this

caused an issue accessing variables that spanned multiple data banks. C18 only allows

users to access variables like these using pointers.

j. Added a new user function. The FSrename function will allow the user to rename files

and directories. A version that accepts a ROM filename is available for PIC18

(FSrenamepgm). The API is:

Function: int FSrename (const char *fileName, FSFILE * fo)
PreCondition: None
Input: fileName - The new name of the file
 fo - The file to rename
Output: int - Returns 0 if success, -1 otherwise
Side Effects: None
Overview: Change the name of a file or directory
Note: This function will change the name of the current
 working directory if ‘fo’ equals NULL.

3. Known Issues

a. This implementation does not support long file names. When using the FSremove or

FSremovepgm functions on a file with long file names, the file’s FAT entries and short

name directory entry will be deleted successfully, but any long file name entries will not

be removed.

4. Compiler Version Used

This library was compiled using MPLAB C18 v.3.20, MPLAB C30 v.3.10, and MPLAB

C32 v1.0 C compliers.

5. Memory Size

Unoptimized memory usage for the file interface library using the SD-SPI physical layer

is given in Table 1. 512 bytes of data memory are used for the data buffer, and an

additional 512 are used for the file allocation table buffer. Additional data memory will

be needed based on the number of files opened by the user at once. The default data

memory values provided include space for three files opened in static allocation mode.

The C18 data memory value includes a 512 byte stack. The first row of the table indicates

the smallest amount of memory that the library will use (for read-only mode), and each

subsequent row indicates the increase in memory caused by enabling other functionality.

Optimized and unoptimized totals for program and data memory with all functions

enabled are listed after the table. This data was compiled while allowing two file objects

to be opened simultaneously.

Table 1: Memory Usage (Unoptimized)

Functions
Included

Program
Memory

(C18)

Data
Memory

(C18)

Program
Memory

(C30)

Data
Memory

(C30)

Program

Memory

(C32)

Data

Memory

(C32)

All extra

functions

disabled (read

only mode)

24937

bytes

1879 bytes 12657 bytes 1316 bytes 19380

bytes

2896

bytes

Read only mode

with directory

support

+8092

bytes

+77 bytes +4182 bytes +80 bytes +5484

bytes

+92

bytes

File Search

enabled

+3236

bytes

+0 bytes +1350 bytes +0 bytes +1776

bytes

+0 bytes

Write enabled +17354

bytes

+0 bytes +8919 bytes + bytes +11508

bytes

+0 bytes

Format enabled

(Write must be

enabled)

+6816

bytes

+0 bytes +3516 bytes +0 bytes +4804

bytes

+0 bytes

Directories

enabled (With

writes enabled)

+16293

bytes

+90 bytes +8694 bytes +80 bytes +11672

bytes

+92

bytes

FSfprintf

enabled

+13055

bytes

+65 bytes +4827 bytes +0 bytes +8536

bytes

+0 bytes

File Search and

Directories

enabled

+232 bytes +0 bytes +57 bytes +0 bytes +68

bytes

+0 bytes

Pgm functions

enabled

+2640

bytes

+0 bytes N/A N/A N/A N/A

Total memory usage*

C18:

Unoptimized Program memory- 71508 bytes

Unoptimized Data memory- 1969 bytes

Optimized Program memory- 38292 bytes

Optimized Data Memory- 1969 bytes

C30:

Unoptimized Program memory- 40020 bytes

Unoptimized Data memory- 1396 bytes

 Optimized Program memory- 23904 bytes

 Optimized Data memory- 1396 bytes

C32:

 Unoptimized Program memory- 57744 bytes

 Unoptimized Data memory- 2988 bytes

 Optimized Program memory- 34508 bytes

 Optimized Data memory- 2988 bytes

*Note: C18 total memory usage does not include FSfprintf functionality. Since FSfprintf

requires integer promotion to be enabled, using it greatly increases the code size of all

functions.

6. More Information

More detailed information about the operation of this library is available in Application

Note 1045, available from www.microchip.com.

